
Prof. Kishor Trivedi
Department of Electrical and Computer Engineering

Duke University, Durham, NC, USA
ktrivedi@duke.edu

www.researchgate.net/project/Software-Fault-Tolerance-via-Environmental-Diversity

www.researchgate.net/project/Date-race-software-failure-MTTF-prediction

Software Fault Tolerance via

Environmental Diversity
DCCN 2021

September 20, 2021

1

http://www.researchgate.net/project/Software-Fault-Tolerance-via-Environmental-Diversity

Bottom Line Up Front -- BLUF

➢Today's complex systems (including SDN, CPS, smartgrid, aircraft,
spacecraft, weapon systems, and IoT) contain a huge amount of
software→ Software is a major cause of system undependability

➢Software failures during operation are a fact that we need to learn
to deal with. Traditional method of software fault tolerance, based
on design diversity, is expensive and hence does not get used
extensively. Software fault tolerance based on inexpensive
environmental diversity could be exploited

➢The focus in the Software Engineering community so far has been
on software faults; we need to pay equal attention to failures
caused by software bugs (faults) and the recovery from these
failures during the operational phase

➢Focus in the Software Reliability Engineering community so far has
been on software reliability; we need to pay attention to software
availability as well

2

Outline

➢Motivation/Definitions

➢Real System Examples

➢Software Fault Classification

➢Environmental Diversity

➢Methods of Mitigation

➢Conclusions

3

Health & Medicine

Communication

Avionics

Entertainment Banking

Our Dependence on Technical Systems →
These systems need to be highly reliable

4

Need for a new term

•Reliability is often used in a generic sense as
an umbrella term.

•Reliability is also used as a precisely defined
mathematical function.

•To remove the confusion, IFIP WG 10.4
proposed Dependability as an umbrella term
and Reliability is then to be used as a well-
defined mathematical function.

5

Dependability: Trustworthiness of a system such that
reliance can justifiably be placed on the service it delivers

Dependability

Attributes

Availability
Reliability
Safety
Maintainability

Fault Prevention/Avoidance
Fault Removal
Fault Tolerance
Fault Forecasting

Means

Threats
Faults
Errors
Failures

Dependability – an Umbrella Term

Copyright © 2021 by K.S. Trivedi 6

7 Copyright © 2021 by K.S. Trivedi

IFIP Working Group 10.4

➢Failure occurs when the delivered service no longer complies with the

desired output.

➢Error is that part of the system state which is liable to lead to

subsequent failure.

➢Fault (or bug) is adjudged or hypothesized cause of an error.

8

Faults are the cause of errors that may lead to failures

Fault Error Failure

• Fault: adjudged or hypothesized cause of an error;

• Error: part of the system state which is liable to lead to a failure

• Failure: deviation of the delivered service from compliance with

the specification (e.g., the service is unavailable or it provides a

wrong answer).

Copyright © 2021 by K.S. Trivedi9

Figure: Fault dormancy and error latency

• For software, the fault dormancy and error latency may be long

• Can be order of years for dormancy but days and weeks for latency

• Therac-25 introduced in 1982, first error occurred in 1986; thence

failure occurred in few seconds

• https://web.stanford.edu/class/cs240/old/sp2014/readings/therac-25.pdf

• Errors with long latency may be removed by software rejuvenation

• https://www.gao.gov/products/IMTEC-92-26

Copyright © 2021 by K.S. Trivedi10

https://web.stanford.edu/class/cs240/old/sp2014/readings/therac-25.pdf
https://www.gao.gov/products/IMTEC-92-26

• Physical vs. Design/Manufacturing/Integration vs.
Interaction

• Malicious vs. non-malicious

• Node vs. Link

• Hardware vs. Software vs. Human

• Hardware:

➢Permanent, Intermittent, Transient

• Software

➢Bohrbugs, Mandelbugs, Concurrency bugs,
Heisenbugs, Aging-related bugs

Fault Classification

Copyright © 2021 by K.S. Trivedi11

•Omission failures (don’t get a response)
➢Crash failures
➢Infinite loop

•Value failures (get a response but wrong value)

•Timing failures
➢Early
➢Late (performance or dynamic failures)

Failure Classification

Copyright © 2021 by K.S. Trivedi12

• A failure is classified with respect to the consequences it has for
the end-user or end-user application. This is called the failure
effect.

• In safety critical system, failures are categorized as:

➢Benign failures vs. catastrophic failures

➢Safe vs. Unsafe failure

• In the context of security, they are classified as:

➢Breach of confidentiality vs. breach of integrity vs. loss of use

Failure Effects

Copyright © 2021 by K.S. Trivedi13

Can we trust computers?

Just to mention (very) few cases …

• 2020: Heathrow disruption

• 2019: Facebook, whatsapp, Instagram outage

• 2016: Yahoo data breach (credential leaks)

• 2015: HSBC Payment glitch

• 2004 Mercedes-Benz - “Sensotronic” braking system

• 2000 National Cancer Institute, Panama City

14

Example Failures from High Tech companies

Mar. 2015 , Gmail was down for 4 hours and 40 min.

Mar. 2015, Down for 3 hours affecting Europe and US

Sept. 2015, AWS DynamoDB down for 4 hours impacting
among others Netflix, AirBnB, Tinder

Dec. 2015, Microsoft Office 365 and Azure down for 2 hours

Mar. 2015, Apple ITunes, App Stores long 0utage: 12 hours

15

Feb. 2017 Amazon S3 service outage (almost 6 hours)

These examples indicate that even the most advanced tech
companies are not offering high levels of dependability

Software Increasingly Matters

4 March 2003, GSAW Presentation from Paul Cheng, Corporate Risk Assessment & Management Subdivision

Software is a big problem

➢Hardware fault tolerance, fault management,
redundancy management, reliability/availability
modeling relatively well developed

➢System outages more due to software faults

17

Key Challenge:

Software reliability is one of the
weakest links in system
reliability/availability

18

Failure/downtime due to software bugs

Oct. 2012

Sept. 2011

Amazon Webservices – 6 hours (Memory leak)

Amazon EC2 – 2 hours

Google Docs service outage – 1 hour (Memory leak

due to a software update)

Copyright © 2021 by K.S. Trivedi19

Failure/downtime due to software bugs

Jul. 2017

Jul. 2017

Google Cloud Storage service outage (3 hours and 14

min.) - API low-level software bug

Jul. 2017 - Microsoft Azure service outage (4 hours)

– Load Balancer Software bug

These examples indicate that even the most advanced tech companies are not offering
highly reliable software

Copyright © 2021 by K.S. Trivedi20

More Recent Examples

➢One Fastly customer triggered internet meltdown – June 9, 2021
➢www.bbc.com/news/technology-57413224

➢In Commercial aircrafts (Boeing 737 Max software problem)
➢ Ethiopian Airlines Flight, March 2019,

149 people died
➢ Lion Air Flight crash, Oct. 2018,

189 people died

21

Failures & Downtime Lead to

• Loss of Reputation

• Loss of Revenue

•Possible Loss of Mission

•Possible Loss of Life

22

•That reduce system failures and reduce downtime due
to these failures (contributed by hardware, software and
humans)

• For System Reliability/Availability assessment and bottleneck
detection to help decide the most cost-effective path to
improvement of reliability/availability

Ref: Trivedi & Bobbio, Reliability and Availability: Modeling,
Analysis, Applications, Cambridge University Press, 2017

Need Methods

23

Methods to Improve Software Reliability/Availability

•Fault Avoidance or Fault Prevention

•Fault Removal by testing/debugging

•Fault Tolerance or Use of Redundancy

•Fault/Failure Forecasting

24

Software Reliability: Means

• Fault prevention or Fault avoidance
• Good software engineering practices

• Good software architecture

• Use of formal methods

➢UML, SysML, BPML
➢ Proof of correctness
➢Model Checking (NuSMV, SMART, SPIN, PRISM)

• Bug free code not yet possible for large scale software systems

• Yet there is a strong need for failure-free system operation

25Copyright © 2021 by K.S. Trivedi

Fault removal by testing and debugging

Fault removal

can be carried out during:

• the specification and design phase

• the development phase

• the operational phase

• Test software for as long as possible

▪ Use automated testing tools – TestComplete，TestProject

▪ Use coverage testing tools – CREST， EvoSuite

▪ Use combinatorial testing tools – ACTS, ComTest

26Copyright © 2021 by K.S. Trivedi

Reliable Software

➢Fault removal
▪ Can be carried out during

✓the specification and design phase
✓the development phase
✓the operational phase

▪ Failure data may be collected and used to parameterize a software reliability
growth model(SRGM) to predict when to stop testing

➢Impossible to fully test and verify if software is fault-free

“Testing shows the presence, not the absence, of bugs” - E. W. Dijkstra

➢Software is still delivered with many bugs either because of
inadequate budget for testing, very difficult to reproduce/detect/
localize/correct bugs or inadequacy of techniques employed/
known

Motivation

Copyright © 2021 by K.S. Trivedi27
27

Software fault tolerance is a potential

solution to improve software reliability in lieu of

virtually impossible fault-free software

Today's complex systems contain a large amount of software

Software in operation contain a lot of bugs, in spite of best fault
avoidance and fault testing/removal techniques

Software failures are a major cause of system undependability

High Reliability and Availability:

GBSD Program 28

Traditional Software fault tolerance

▪Classical techniques are based on Design Diversity
▪Use of multiple versions (or “variants”) of a software

system
▪Different versions may execute concurrently or

sequentially
▪Rationale is that multiple diverse versions will fail

differently, i.e., for different inputs/workloads
▪Multiple versions are developed from common

specifications
▪Also helps with respect to intrusion tolerance

29

Software Fault Tolerance
Classical Techniques

➢Design diversity

▪ Recovery block

▪ N-version programming

➢Key references:

➢System structure for software fault tolerance, Randell, IEEE Trans.
Soft. Eng, 1975.

➢Reliability Issues in Computing System Design, Randell, Lee and
Treleaven, ACM Computing Surveys, 1978.

➢N-version version programming: a fault-tolerance approach to
reliability of software operation, Chen and Avizienis, Proc. FTCS
1995.

Copyright © 2021 by K.S. Trivedi30
30

Software Fault Tolerance:
Classical Techniques

➢Design diversity
▪ Recovery block

▪ N-version programming

▪ ……

31

Expensive →
used only in
safety-critical
applications!

Design
diversity

Yet there are
stringent

requirements for
failure-free

operation in other
applications!

Challenge: Affordable Software Fault Tolerance

A possible answer: Environmental Diversity

Methods to Improve Software Reliability/Availability

•Fault Avoidance or Fault Prevention
•Good software engineering practices, formal methods
•Employing highly reliable components/subsystems

•Fault Removal by testing/debugging
•Software reliability growth models

•Fault Tolerance or Use of Redundancy
•Design diversity
•Environmental Diversity

•Fault/Failure Forecasting

32

Outline

➢Motivation

➢Real Examples of software fault tolerance

➢Software Bug Classification

➢Environmental Diversity

➢Methods of Mitigation

➢Conclusions

33

Real System: SIP on WebSphere

IBM Implementation (around 2007)

34Copyright © 2021 by K.S. Trivedi

High-Availability SIP System

• Real System Developed by IBM

• SIP: Session Initiation Protocol

• Hardware platform: IBM Blade Center

• Software platform: IBM WebSphere

• Telco customer asked IBM for models to quantify this
product

• IBM asked me to lead the modeling project

• To quantify system (steady-state) availability
Ref: Trivedi, Wang, Hunt, Rindos, Smith, Vashaw,
“Availability Modeling of SIP Protocol on IBM
WebSphere,” PRDC 2008

• To quantify a user-oriented metric called DPM
Ref: Trivedi, Wang & Hunt. “Computing the number of
calls dropped due to failures,” ISSRE2010

35

Blade 4

IP Sprayer-IBM Load

Balancer

-

SIP

IBM PC

Replication

Group 3

Blade 2

Blade 3

Blade 4

Blade 2

AS 1

AS 2

AS 3

AS 4

AS 5

AS 1

AS 4

AS 2

AS 5

AS 6

AS 3

AS 6

Blade 3

Replication Domain 1

Replication Domain 2

Replication Domain 3

SIP

Proxy 1

SIP

Proxy 1

Blade 1

Blade 1

Replication Domain 4

Replication Domain 5

Replication Domain 6

Blade Chassis 1

Blade Chassis 2

Blade 4

Test Driver

Test Driver

Test drivers

DM

AS1 thru AS6 are

Application Server

Proxy1's are Stateless

Proxy Server

More details in papers:
• PRDC 2008
• ISSRE 2010

High availability SIP Application

36

High availability SIP Application

➢Hardware configuration:

▪ Two BladeCenter chassis; 4 blades (nodes) on each chassis (1 chassis is sufficient from
performance perspective)

➢Software configuration:
▪ 2 copies of SIP/Proxy servers (1 sufficient for performance)

▪ 12 copies of WebSphere Application Server (WAS or AS) (6 copies sufficient for
performance)

▪ Each WAS instance forms a redundancy pair (replication domain) with WAS installed
on another node on a different chassis

➢Fault Tolerance:

▪ The system has both hardware redundancy

▪ and software redundancy.

37

High availability SIP Application

➢Software Redundancy

▪ Identical copies of SIP proxy used as backups (hot spares)

▪ Identical copies of WebSphere Applications Server (WAS) used as

backups (hot spares)

▪ Type of software redundancy – (not design diversity) but replication

of identical software copies

▪ Normal recovery after a software failure – uses time redundancy

✓Restart software, reboot node or fail-over to a software replica;

only when all else fails, a “software repair” is invoked

38

Have been
Known to help in

dealing with
hardware

transient faults

Do they help in
dealing with failures
caused by software

bugs? Without fixing
those bugs?

If yes, why?

1 2

3

39

Software Fault Tolerance: New Thinking

Without fixing bugs

Failover to an identical software replica
(that is not a diverse version)

They have exactly the same bugs

Does it
help?

If yes,
why?

Thirty years ago this would be considered crazy!

Software Fault Tolerance:
New Thinking

40

Bugs are not all equal !

• Fault triggers make the difference

• Some bugs are “trivial”, and failures caused by them can be
easily “reproduced” once detected during test

• Other bugs are “subtle”, and even “reproducing failures
caused by them” is challenging
• Race conditions
• Memory leaks
• Hardware-software interaction related bugs
• ...
These bugs have a significant impact in terms of software
failures and costs

41

Outline

➢Motivation
➢Real System Examples
➢Software Bug Classification
▪“Fighting Bugs: Remove, Retry, Replicate
and Rejuvenate,” Grottke & Trivedi, IEEE
Computer Magazine, 2007.

➢Environmental Diversity
➢Methods of Mitigation
➢Conclusions

42

IFIP Working Group 10.4

➢Failure occurs when the delivered service no longer complies with the

desired output.

➢Error is that part of the system state which is liable to lead to subsequent

failure.

➢Fault (or bug) is adjudged or hypothesized cause of an error.

43

Faults are the cause of Errors that may lead to Failures

Fault Error Failure

Need to Classify bug types

➢We submit that a software fault tolerance approach based

on retry, restart, reboot or fail-over to an identical software

replica (not a diverse version) may work because of a

significant number of software failures are caused by

Mandelbugs (environment-dependent bugs) as opposed to

the traditional software bugs now known as Bohrbugs.

44

Software fault classification

Bohrbug (BOH) := A fault that is easily isolated and that
manifests consistently under a well-defined set of
conditions, because its activation and error propagation
lack complexity.

Non-Aging related Mandelbug (NAM) := A fault whose
activation and/or error propagation are complex. Typically, a
Mandelbug is difficult to isolate, and/or the failures caused
by a it are not systematically reproducible.

Aging related bug (ARB) := A fault that leads to the
accumulation of errors either inside the running application
or in its system-context environment, resulting in an
increased failure rate and/or degraded performance.

45

Mandelbugs

• Besides workload and internal state of the software system, its
system-context (or operating) environment participates in
determining whether a failure due to such a bug will occur

➢So a fault is a Mandelbug if its manifestation as a failure is
subject to the following complexity factors
▪ Long time lag between fault activation and failure appearance

▪ Operating environment dependence (OS resources, other applications
running concurrently, hardware, network…)

▪ Timing among submitted operations

▪ Sequencing or ordering of operations

➢A failure due to a Mandelbug thus may not recur upon the
resubmission of the same workload if the operating
environment has changed enough

46

Relationships of the Bug Types

➢Bohrbug and Mandelbug are complementary antonyms.

Aging-related bugs are a subtype of Mandelbugs

47

Aging-Related Bugs

Bohrbugs

Mandelbugs

AgingRelated Bugs

Bohrbugs

Mandelbugs

Bug Types in Several Systems

➢JPL/NASA flight software - An empirical investigation of fault types in space mission
system software, M. Grottke, A. Nikora, and K. Trivedi. DSN, 2010.

➢Linux, MySQL, Apache AXIS, HTTPD - Fault triggers in open-source software: An
experience report, Cotroneo, Grottke, Natella, Pietrantuono, Trivedi. ISSRE, 2013.

➢Android operating system - An Empirical investigation of fault triggers in Android
operating system, F. Qin, Z. Zheng, X. Li, Y. Qiao, and K. Trivedi. PRDC, 2017.

➢Linux - Fault Triggers in Linux Operating System: From Evolution Perspective, G. Xiao,
Z. Zheng, B. Yin, and K. Trivedi. ISSRE, 2017 (all the bug reports in Linux)

48

Project LoC % BOH % NAM % ARB % UNK

JPL/NASA 61.4 32.1 4.4 2.1

Linux 1.31M 42.2 41.9 8.3 7.6

MySQL 453K 56.6 30.3 7.7 5.4

HTTPD 145K 81.1 10.5 7.0 1.4

AXIS 80K 92.5 3.5 4.0 0.0

Android 65.2 27.0 4.4 3.4

Linux2 55.8 31.7 7.8 4.7

Software Faults and Mitigation Types

➢The fault classification is not merely theoretical, it

has also practical implications

➢Each type of software fault may require different

type of approach during development, testing, as

well as during operations

49

Outline

➢Motivation

➢Real System Examples

➢Software Fault Classification

➢Environmental Diversity

➢Methods of Mitigation

➢Conclusions

50

Software Fault Tolerance:
Motivation of Environmental Diversity

➢Motivation: For a Mandelbug, environmental factors could affect
the fault activation and/or error propagation. Examples are:
◼Data Race/Deadlock, whose fault activation could be affected

by other concurrently running processes/threads → after a
retry/restart/reboot we may not observe the failure.
◼Memory Leak, whose error propagation could be influenced by

the size of available memory → rejuvenation/reconfigure may
avoid/postpone the failure.

51

Environmental Factors,
including hardware/software.

Affect
activation

Affect propagation

Software Fault Tolerance:
New Thinking

➢Environmental Diversity as opposed to Design Diversity

➢Our claim is that this (retry, restart, reboot, failover to identical

software copy) may well work since failures due to Mandelbugs are

not negligible (41.9% in Linux bug reports). We thus have an

affordable software fault tolerance technique that we call

Environmental Diversity

52

Software Fault Tolerance:
What is Environmental Diversity?

➢The basic idea of Environmental Diversity
▪ Restart an application (without fixing the bug) after recovery and it

most likely works -- Why?

▪ Because of the environment where the application executed in has
changed enough to avoid the fault activation.

➢The environment is understood as
▪ OS resources, other applications running concurrently and sharing

the same resources, interleaving of operations, concurrency, or
synchronization.

➢This is Fault Tolerance because we do not necessarily fix the fault;
fault caused a failure but this failure is dealt with by using time
redundancy hence the user may not experience the failure again on
retry.

53

Outline

➢Motivation

➢Real System Examples

➢Software Fault Classification

➢Environmental Diversity

➢Methods of Mitigation

➢Conclusions

54Copyright © 2021 by K.S. Trivedi

m 55

Methods of Mitigation

Implications of Mandelbugs

➢Can measure/model software availability
➢Combined software and hardware availability
➢Need:
➢Develop methods of debugging and testing for

environment-dependent bugs
➢Methods to determine environmental factors and their

effects
➢Run-time control of environmental factors to avoid failure

occurrences
➢Optimal recovery sequence after failure occurrence
➢Experimental methods to determine the nature software

failure times including use of ALT

56

Mandelbug “Reproducibility”

➢(Failures due to) Mandelbugs are really hard to reproduce
• Conducted a set of experiments to study the environmental

factors that affect the reproducibility of Mandelbugs in MySql
▪ disk usage,

▪memory occupancy

▪ Concurrency level

• High usage levels of environmental factors increases significantly
failure occurrences due to Mandelbugs

➢Reproducibility of Environment-Dependent Software Failures: An Experience
Report, Cavezza, Pietrantuono, Alonso, Russo, Trivedi, ISSRE, 2014.

57

Outline

➢Motivation/Definitions

➢Real System Examples

➢Software Fault Classification

➢Environmental Diversity

➢Methods of Mitigation

➢Conclusions

58

Key Points

➢Today's complex systems (including SDN, CPS, smartgrid, aircraft,
spacecraft, weapon systems, and IoT) contain a huge amount of
software→ Software is a major cause of system undependability

➢Software failures during operation are a fact that we need to learn
to deal with. Traditional method of software fault tolerance, based
on design diversity, is expensive and hence does not get used
extensively. Software fault tolerance based on inexpensive
environmental diversity could be exploited

➢The focus in the Software Engineering community so far has been
on software faults; we need to pay equal attention to failures
caused by software bugs (faults) and the recovery from these
failures during the operational phase

➢Focus in the Software Reliability Engineering community so far has
been on software reliability; we need to pay attention to software
availability as well

59

Methods to Improve Software Reliability/Availability

• Fault Avoidance or Fault Prevention

• Good software engineering practices, use of model checking

• Good software architecture, Use of FMEA

• Use of Micro-services

• Fault Removal by testing/debugging

• Employing good software testing methods, Use of FMEA

• Software reliability growth models

• Fault Tolerance or Use of Redundancy

• Design diversity/ Environmental Diversity - Fault Tolerance patterns

• Fault/Failure Forecasting

• Reliability modeling to Identify bottlenecks

• Availability modeling to Identify bottlenecks

• Predict when failures may occur and thence use for preventive
maintenance scheduling (software rejuvenation)

• Identify fault-prone modules to help allocate testing resources
60

Some More Notes

•Conventional wisdom is that unlike hardware, software
does not age, so preventive maintenance does not help
in software

•However, since 1995 it has been recognized that software
does age and software rejuvenation (preventive
maintenance)

does help improve

software reliability/availability

61

Key References

Fault Classification

• Orthogonal Defect Classification – A Concept for In-process Measurements, R.

Chillarege, et al., IEEE Trans. on Software Engineering, 1992

• Fighting Bugs: Remove, Retry, Replicate and Rejuvenate, Grottke, Trivedi, IEEE

Computer, 2007

• An Empirical Investigation of Fault Types in Space Mission System Software,

Grottke, Nikora and Trivedi, Proc. DSN, 2010

• Analysis of Bugs in Apache Virtual Computing Lab, Frattini, Ghosh, Cinque, Rindos,

and Trivedi, IEEE/IFIP DSN Workshop, 2013

• An empirical study of fault triggers in the Linux operating system: An evolutionary

perspective, Xiao, Zheng, Yin, Trivedi, IEEE Transactions on Reliability, 2019

• An empirical investigation of fault triggers in Android operating system, Qin, Zheng,
Li, Qiao, Trivedi, IEEE Transactions on Reliability, 2019

62

Key References

Environmental Diversity and Methods of Mitigation(1)

• Performance and Reliability Evaluation of Passive Replication Schemes in
Application Level Fault Tolerance, S. Garg, Y. Huang, C. M. R. Kintala, K. S. Trivedi,
and S. Yajnik. Proc. FTCS 1999.

• Whither generic recovery from Application Faults? A fault study using Open-
Source Software, Chandra S., Chen P. M., Proc. CDSN 2000.

• Vibhu S. Sharma, Kishor S. Trivedi, “Reliability and Performance of Component
Based Software Systems with Restarts, Retries, Reboots and Repairs”, 17th Int.
Symp. on Software Reliability Engineering (ISSRE 2006)

• An Empirical Investigation of Fault Repairs and Mitigations in Space Mission
System Software J. Alonso, M. Grottke, A. Nikora, and K. Trivedi. Proc. DSN 2013.

• Software fault mitigation and availability assurance techniques, K. Trivedi, M.
Grottke, and E. Andrade. International Journal of System Assurance Engineering
and Management, 2011.

63

Key References

Environmental Diversity and Methods of Mitigation(2)

• Fault triggers in open-source software: An experience report, Cotroneo,

Grottke, Natella, Pietrantuono, Trivedi, ISSRE 2013

• Reproducibility of environment-dependent software failures: an

experience report, Cavezza, Pietrantuono, Alonso, Russo, Trivedi , ISSRE

2014

• Recovery from software failures caused by mandelbugs, Grottke, Kim,

Mansharamani, Nambiar, Natella, & Trivedi, IEEE Trans. on Reliability, 2015

• Understanding the impacts of influencing factors on time to a datarace

software failures, Qiu, Zheng, Trivedi, Yin, ISSRE 2017

• An empirical investigation of fault triggers in Android operating
system, Qin, Zheng, Li, Qiao, Trivedi, IEEE Transactions on Reliability, 2019

64

Key References

• Analysis and Prediction of Mandelbugs in an Industrial Software System,
Carrozza, Cotroneo, Natella, Pietrantuono, Russo, ICST, 2012

• Studying Aging-Related Bug Prediction Using Cross-Project Models

• Qin, Zheng, Qiao, Trivedi, IEEE Transactions on Reliability, 2018

• Supervised Representation Learning Approach for Cross-Project Aging-
Related Bug Prediction, Wan, Zheng, Qin, Qiao, Trivedi, IEEE Int. Symp. on
Software Reliability Engineering (ISSRE), 2019

65

Prediction of Fault-Proneness

